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models !
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Once upon a time in the very early 2000’s I
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Once upon a time in the very early 2000’s II

I Around 360M Internet users1: ∼100M US, ∼100M EU,
∼100M Asia

I ADSL is spreading (against 56K modems)

I RAM: 64MB at ∼70$2

I HD: 40GB at ∼250$2

I First USB flash drive commercialized3 (8MB)

I “1999: The release of Oracle8i aimed to provide a database
inter-operating better with the Internet (the i in the name
stands for ’Internet’).”4

I Google.com is 3 years old and Adwords is launched (350
users) 5

1
http://www.internetworldstats.com/

2
http://www.statisticbrain.com/average-historic-price-of-ram/

3
https://en.wikipedia.org/wiki/USB_flash_drive

4
https://en.wikipedia.org/wiki/Oracle_Database

5
https://www.google.com/about/company/history/

http://www.internetworldstats.com/
http://www.statisticbrain.com/average-historic-price-of-ram/
https://en.wikipedia.org/wiki/USB_flash_drive
https://en.wikipedia.org/wiki/Oracle_Database
https://www.google.com/about/company/history/


5

From the archives I
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From the archives II
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From the archives III
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From the archives IV
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(re)Birth of a Problem (PPDP)
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Governor Weld’s Case I

In 2002, Sweeney accessed two datasets [46]:

I The Massachussets Group Insurance Commission (GIC):

I collected health and demographic data of 135 000 state
employees and families

I produced a copy of the data for research purposes
I Believed to be safe: names and social security numbers had

been removed

I The voter list of Cambridge Massachussets (two diskettes,
$20): demographic data and names;
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Governor Weld’s Case II

Figure: Medical JOIN Voter ON (zip, DoB, sex)

A straightforward disclosure

I Governor Weld lived in Cambridge and was part of the GIC
dataset;

I In the voter list: 6 individuals had his birthdate, 3 of them
were men, only one had Weld’s zipcode;
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Pseudonymity is not Enough

Publishing data while only removing direct identifiers, e.g., name,
address, from data (aka pseudonymity) may be harmful not only
for Governor Weld !

Simple Demographic Data is Identifying for Many Persons

The majority of the US population is unique wrt {zip code, DoB,
sex} [45, 22].
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k-Anonymity : Assumptions I

I Considers that individuals’ data is made of :
I Identifying attributes, or ID: identify uniquely each individual

(e.g., 〈SSN〉);
I Quasi-Identifying attributes, or QID: may identify uniquely

some individuals (e.g., 〈 Zip, DoB〉);
I Sensitive attributes, or SD: sensitive data, e.g., 〈 Disease 〉;
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k-Anonymity : Assumptions II

Figure: Quasi-identifiers and sensitive data in Gov. Weld’s case
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k-Anonymity: the Model I

Warning

We consider in this talk that each individual has a single record in
the DB.
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k-Anonymity: the Model II

A release is k-anonymous [46] if:

I It does not contain any direct identifier

I The QID of each record has been made indistinguishable from
at least (k − 1) others

⇒ Each sensitive data is within a group that corresponds to at
least k QID.
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k-Anonymity: the Model III

Name Zip Age Dis.

Bob 75001 22 Cold
Bill 75002 29 Flu
Don 75003 22 Cold
Sue 75010 28 HIV

Table: Raw data (e.g., GIC medical data).

Zip Age Dis.

[75001, 75002] [22, 29] Cold
[75001, 75002] [22, 29] Flu
[75003, 75010] [22, 29] Cold
[75003, 75010] [22, 29] HIV

Table: A possible 2-Anonymous Release of the raw data.
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k-Anonymity: the Model IV

Name Zip Age

Bob 75001 22

Zip Age Dis.

[75001, 75002] [22, 29] Cold
[75001, 75002] [22, 29] Flu
[75003, 75010] [22, 29] Cold
[75003, 75010] [22, 29] HIV

Table: Left: External knowledge made of a known QID (e.g., voter list).
Right: A possible 2-Anonymous release of the raw data.

⇒ Joins on QID are now ambiguous: what is Bob’s disease?
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k-Anonymity: the Model V

Vocabulary

I Equivalence class: A group of records indistinguishable wrt
their QID

I Sanitized release: the set of equivalence classes finally
published
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Mondrian : A Simple Algorithm for Achieving k-Anonymity
I

I Goal: form equivalence classes that span at least k similar
QID values

I How? Greedily !
I Starts with one partition of the dataset containing all the

records
I Recursively partitions it into smaller and smaller partitions
I Finally replace the QID value of each record by the range of its

partition
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Mondrian : A Simple Algorithm for Achieving k-Anonymity
II

Algorithm 1: MondrianAnonymize

input : A partition P to split
output: A set of partitions, each containing between k and 2k − 1

tuples
1 if no allowable multidimensional cut for partition then return P ;
2 else
3 dim ← chooseDimension();
4 fs ← frequencySet(P, dim);
5 splitVal ← findMedian(fs);
6 L ← {t ∈ P : t.dim ≤ splitVal };
7 R ← {t ∈ P : t.dim > splitVal };
8 return MondrianAnonymize(L) ∪ MondrianAnonymize(R)
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Mondrian : A Simple Algorithm for Achieving k-Anonymity
III

MondrianAnonymize internal calls:

I chooseDimension: choose the dimension in which to split
(usually the widest one);

I frequencySet: set of unique values taken by the tuples for
the chosen dimension, each paired with the number of times it
appears;

I findMedian: find the median;
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Mondrian Illustrated
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In this example, we want 2-Anonymity (at least two records per
class).
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Mondrian, for Real I

Actually, Mr Mondrian was a painter !

Figure: Composition en rouge, jaune, bleu et noir. Mondrian. 1926
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Mondrian, for Real II

And a MondrianAnonymize partitioning may look like this :

Figure: Example of a Mondrian partitioning [34] (synthetic data, 1000
tuples, k=25, normal distribution).
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Components of a Privacy-preserving Data Publishing
Solution

Three essential components exhibited by the k-Anonymity research
track:

1. Privacy model: What does it mean for the data released to
be privacy-preserving? Ex.: k-Anonymity.

2. Privacy algorithm: How to produce the privacy-preserving
dataset to be released? Ex.: Mondrian.

3. Utility metric: How much useful is the released data? Ex.:
low number of generalizations.

Pseudonymity does not work ⇒ Which component(s) does it miss?
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Waiting for the Next Scandal

During a few years :

I Academics focus on the algorithmics aspects of k-Anonymity

I And pseudonymity fuels another scandal. . .
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Thelma Arnold’s Case I

In 2006, AOL releases a list of web search queries [5]:

I 20 million search queries

I issued by 658.000 unnamed users

AnonID Query QueryTime

1326 “holiday mansion houseboat” 2006-03-29
1326 “back to the future” 2006-04-01

591476 “english spanish translator” 2006-03-20
591476 “panama vacations” 2006-03-20
591476 “breast reduction” 2006-03-23
591476 “volunteer work at hospitals in brooklyn” 2006-05-24
591476 ... ...
591476 “how to secretly poison your ex” 2006-03-12
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Thelma Arnold’s Case II

And especially:

AnonID Query

4417749 people with last name “Arnold”
4417749 “landscapers in Lilburn,Ga”
4417749 “60 single men”
4417749 “dog that urinates on everything”
4417749 dog-related queries

⇒ A few days after: Thelma Arnold is identified [6]. . . and AOL removes hastily the
dataset from its website.
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Call for Another Model

I On the same year, Machanavajjhala et al critically analyze the
k-Anonymity guarantees

I Limits of the adversarial model are identified, an alternative
model, called l-Diversity, is proposed
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Some Defects of k-Anonymity

Name Zip Age

Bob 75001 22

Zip Age Dis.

[75001, 75002] [22, 29] Cold
[75001, 75002] [22, 29] Flu
[75003, 75010] [22, 29] Cold
[75003, 75010] [22, 29] HIV

Table: Attack considered by k-Anonymity. Left: External knowledge made
of a known QID (e.g., voter list). Right: A possible 2-Anonymous release.

1. Homogeneity: What if all the SD of the QI of an equivalence
class are identical?

2. Background knowledge: What if the adversary knows that
his victim is more or less likely to have a given sensitive data?

⇒ Motivate the l-Diversity model
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Foundation: the Bayes-Optimal Privacy Model I

Founding intuition

Background knowledge about SD should be expressed and taken
into account by the privacy model.

The Bayes-Optimal Privacy model [37] is an early attempt to
this end (2006):

I Background knowledge: joint distribution between QI and
SD

I Prior belief: given a targeted QI q and a SD s, probability of
s given q

I Posterior belief: given a targeted QI q, a SD s, and the
sanitized release V, probability of s given q and V

I Privacy breach: if distance(posterior belief, prior belief) > θ
(too much gain in knowledge)
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Foundation: the Bayes-Optimal Privacy Model II

The intuition behind THIS definition of a privacy breach is a way
to envision privacy (also called a paradigm in these slides) !

Paradigm#1: Uninformative Principle [37]

A privacy breach occurs when the prior belief of the adversary
differs significantly from his posterior belief.

“If the release of the statistics S make it possible to determine
the value Dk more accurately than is possible without access to
S, disclosure has taken place (. . . )”
Dalenius 1977 [12]
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Bayes-Optimal Privacy : Impractical

If Bayes-Optimal Privacy were practical, it could permit to
check that releases do not allow significant knowledge gains. . .

But :

I Obtaining the joint distribution f that represents the
adversarial background knowledge ?

I What if there are several adversaries ?

I What about other kinds of knowledge ?

I Cost of checking all the possible (q, s) pair !
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l-Diversity I

l-Diversity: a simple and easy-to-check condition for protecting
against SD homogeneity and adversarial negation statements.
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l-Diversity II

l -Diversity
An l-diverse equivalence class contains at least l well-represented
sensitive values.
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l-Diversity III

“Well-represented” can be instantiated in many ways, among
which:

I Naive l-Diversity : at least l distinct values appear ;

I Entropy l-Diversity: the entropy of the set of SD in each
equivalence class should be at least log l ;

I Recursive (c , l)-Diversity: if the most frequent SD in a
class is not much more frequent than the other SD of the class

I (Put your idea here)-Diversity
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The Family of Partition-Based Models and Algorithms

Many followers, based on producing equivalence classes by
generalizing the QID.

Gave rise to the family of partition-based approaches :

1. Remove the ID attribute(s)

2. Form groups of records (partitions) according to the values of
QID and SD of the actual records

3. And finally disclose information (statistics such as min/max)
at the group level.
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Weaknesses

I Proposal (year n) → Attack or limit + fix (year n + 1)
I Various severe attacks/limits exist:

I No composability: intersecting the respective sets of QID and
of SD of two non-disjoint k-Anonymous releases may break
k-Anonymity [50]

I Leaks in the execution sequences (for optimality) :
execution sequence depends on data ⇒ minimality attacks [48]

I Naive adversarial reasonning models : adversarial
correlections between the QID and SD values of an equivalence
class ignore the other classes ⇒ Model the correlations
between QID and SD values, in all the classes, by a bayesian
network with probabilistic parameters (aka deFinetti attacks)
[28]

I Numerous possible types of background knowledge :
negation statements [37], distribution of SD in the dataset
[35], joint distribution between QID and SD [36, 37], logical
sentences [11, 38], etc.

⇒ Is pursuing this cycle worth ?
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RIP Partition-Based Approaches ?

Today in 2017 :

I Partition-based approaches have been shown to suffer from
many flaws

I Strong interest decrease from academics

I Differential privacy and models inspired from it take the lead
(see after)

I But. . .
“Nous sommes en 50 avant Jésus-Christ. Toute la Gaule est
occupée par les Romains. . . Toute ? Non ! Car un village
peuplé d’irréductibles Gaulois résiste encore et toujours à
l’envahisseur.”
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Introduction

I In parallel, an alternative research track is being followed

I Slightly different context: answer interactively to agregate
queries (release statistics)
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Uninformative Paradigm: “Wrong View”

I Uninformation : the opposite goal of data publishing !6

I The comparison between prior/posterior beliefs is hazardous:
I Hard to know what the adversary knows or will know
⇒ Random guesses.

I Dalenius’ desiderata is utopic : any learning can lead to a high
knowledge gain, even if the background knowledge is useless
without the DB, and even if the victim(s) does not participate
in the release.
Ex : Local DB: salaries (secret), objective: release average,
auxiliary knowledge: “Bob’s salary is 10% less than the DB
average.”.

6
For example, learning that “Beer + Donuts = Diaper”

http://www.florent-masseglia.info/biere-et-couches-un-exemple-mythique-du-data-mining/

http://www.florent-masseglia.info/biere-et-couches-un-exemple-mythique-du-data-mining/
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Differential Privacy Paradigm

I Global trends are not private and must be learnt

I Privacy is about each individual value, i.e., each individual
contribution to the global trend

Paradigm#2: Differential Privacy Paradigm

A function f satisfies differential privacy iif: the possible impact of
any individual on its result (its possible outputs) is limited.
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Intuitions
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Intuitions

Figure: Limited impact of any possible Charlie
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Intuitions

Figure: Limited impact of any possible Charlie



45

Initial Model

ε-differential privacy (from [14])

A random function f satisfies ε-differential privacy iff: For all D
and D′ differing in at most one record, and for any possible
output S of f, then it is true that:
Pr[f(D) = S] ≤ eε × Pr[f(D′) = S]

I f : here, an agregate query perturbed by adding random noise
to its output

I “For all D and D′”: all possible datasets

I “D and D′ differing in at most one record”: here, D is D′

with one tuple more or one tuple less (variant: one tuple with
different values). Called neighboring datasets

I ε : the privacy parameter, public, common values: 0.01, 0.1,
ln 2, ln 3

I eε × Pr[. . . ] : if one side is zero, the other must be zero too
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Query Sensitivity

Different individuals, different impacts. . .

In general: Sf = maxD,D′ ||f(D)− f(D′)||1 where D and D′ are two
neighboring datasets.
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Query Sensitivity

Different individuals, different impacts. . .

I Presence/absence of an individual on the result of a COUNT: at
worst +/- 1

I Presence/absence of an individual on the result of a SUM:
max(|domainmin|, |domainmax |)

Quantification of the worst-case impact of any possible individual
on the output of the query f: called query sensitivity, and denoted
Sf.

In general: Sf = maxD,D′ ||f(D)− f(D′)||1 where D and D′ are two
neighboring datasets.
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Laplace Mechanism

A - “Excellent, but how to achieve differential privacy ?”
B - “Just add random noise to each query output, he said !”
A - “But from which distribution ? Uniform ? Gaussian ? Gamma
? Poisson ? . . . ? Any ?”
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Laplace Mechanism

Given f and ε, adding a random variable sampled from a Laplace
distribution with mean 0 and scale factor Sf/ε satisfies
ε-differential privacy [16] (easy to see).

Figure: Laplace (0, 1/0.01)
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Laplace Mechanism

Given f and ε, adding a random variable sampled from a Laplace
distribution with mean 0 and scale factor Sf/ε satisfies
ε-differential privacy [16] (easy to see).

Assume that the COUNT when Bob participates to the dataset is
r = 101:

I In red, distribution of perturbed outputs (r ′ = r + n) when
Bob is in

I In blue, idem when Bob is out
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Nice Properties

I Self-composability : composing the outputs of two
independant releases sanitized by differentially-private
function(s) satisfies differential privacy :

I Where εfinal =
∑
εi if input datasets are not disjoint

I Or εfinal = max εi otherwise

I No breach from post-processing :
I (Laplace mechanism is independent from data)
I Any function applied to a differentially-private input produces

a differentially-private output

A non exact statement hides in this slide, can you find it ?
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Constellations
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Constellations

Ancestors: [1].
Embryo : [8, 20].
Birth: [14, 16].
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“Inventaire, à la Prévert ?”
I Study:

I Assumptions (dataset and attacker) go explicit [30]
I Relationships between models and paradigms [43, 29, 31]
I Algorithmic hardness: e.g., [19]
I Less noise, more queries: e.g., [23, 25, 49]
I etc.

I Develop:
I Distributed time-series: e.g., [42]
I Graphs: e.g., [27, 41, 24]
I Data cubes: e.g., [13, 51]
I Streaming data and pan-privacy: e.g., [15, 17, 10, 40, 18]
I etc.

I Export:
I Relax secure multi-party computation algorithms: e.g.,

[3, 9, 26, 32]
I Use differentially private data structures for processing queries

over encrypted data [coming soon. . . ]
I etc. ?

Disclaimer : My apologies for all the omissions !
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Relaxing Secure Multi-Party Computation Algorithms

Traditional secure multi-party computation (SMC) :

I How to compute f on n datasets D1, . . . , Dn each stored on
a distinct party such that (1) parties learn the result and
(2) nothing else ?

I Solutions are usually based on complex cryptographic
primitives. May be realistic when :

1. n is small and
2. do not connect/disconnect arbitrarily and
3. Di are small

And when the above conjunction does not hold ?
⇒ Relax the security model (point (2)) in order to allow the
disclosure of differentially private information !
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A Recent Illustration : Chiaroscuro [3, 4]

The problem :
I Compute representative profiles of personal time-series

distributed in the personal devices of large populations of
individuals (∼ million) :

I n is large,
I each individual connects and disconnects arbitrarily,
I and f is the k-Means algorithm

TS

I get inspired by others' profiles.

We cannot
access 

private data!

We compute
profiles.

TS

TS

TS

TS

TS

TS

P2
P1

P2
P1
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Centralized k-Means, Intuitively
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Centralized k-Means, Intuitively
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Centralized k-Means, Intuitively
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Recall
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Avoid Reinventing the Wheel

Ingredients :

I How to distribute computation ?
⇒ Adapt gossip algorithms (repeated point-to-point
exchanges between participants)

I How to preserve privacy ?
⇒ Encrypt : additively-homomorphic encryption and
threshold-based decryption
⇒ Perturb : differential privacy - a probabilistic variant - and
distributed sum of noise-shares
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k-Means with Chiaroscuro
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k-Means with Chiaroscuro
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k-Means with Chiaroscuro
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k-Means with Chiaroscuro
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k-Means with Chiaroscuro
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Results

I Correct (similar to non-encrypted gossip computation)

I Secure against honest-but-curious participants modulo
differentially private disclosures

I Experimental evaluations of quality (inertia of clusters) and
performances (CPU cost, network cost, and latency) :
affordable approach
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Conclusion

Privacy-preserving data publishing, where are we now ?

I A decade has passed and natural selection has left alive few
approaches

I Severe flaws within partition-based approaches, hard to fix a
posteriori

I In the meantime, differential privacy has born, grown, and is
now expanding - i.e., studied, developped, and exported
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Data publishing against realistic adversaries.
PVLDB, 2(1):790–801, August 2009.

[37] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam.
`-diversity: Privacy beyond κ-anonymity.
In Proceedings of the 22nd IEEE International Conference on
Data Engineering, ICDE ’06, pages 24–, Washington, DC,
USA, 2006. IEEE Computer Society.

[38] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and
J. Y. Halpern.



58

Worst-case background knowledge for privacy-preserving data
publishing.
In Proceedings of the 23rd IEEE International Conference on
Data Engineering, pages 126–135, 2007.

[39] A. Meyerson and R. Williams.
On the complexity of optimal k-anonymity.
In Proceedings of the Twenty-third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’04, pages 223–228, New York,
NY, USA, 2004. ACM.

[40] D. Mir, S. Muthukrishnan, A. Nikolov, and R. N. Wright.
Pan-private algorithms via statistics on sketches.
In Proceedings of the Thirtieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’11, pages 37–48, New York, NY,
USA, 2011. ACM.

[41] V. Rastogi, M. Hay, G. Miklau, and D. Suciu.



58

Relationship privacy: Output perturbation for queries with
joins.
In Proceedings of the Twenty-eighth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’09, pages 107–116, New York,
NY, USA, 2009. ACM.

[42] V. Rastogi and S. Nath.
Differentially Private Aggregation of Distributed Time-series
with Transformation and Encryption.
In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages
735–746, New York, NY, USA, 2010. ACM.

[43] V. Rastogi, D. Suciu, and S. Hong.
The boundary between privacy and utility in data publishing.
In Proceedings of the 33rd international conference on Very
large data bases, VLDB ’07, pages 531–542. VLDB
Endowment, 2007.

[44] P. Samarati and L. Sweeney.



58

Generalizing data to provide anonymity when disclosing
information (abstract).
In Proceedings of the seventeenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, PODS ’98, pages 188–, New York, NY,
USA, 1998. ACM.

[45] L. Sweeney.
Uniqueness of simple demographics in the u.s. population
(white paper).
Carnegie Mellon University, Laboratory for International Data
Privacy, 2000.

[46] L. Sweeney.
k-anonymity: a model for protecting privacy.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):557–570, 2002.

[47] K. Wang, P. S. Yu, and S. Chakraborty.
Bottom-up generalization: A data mining solution to privacy
protection.



58

In Proceedings of the Fourth IEEE International Conference
on Data Mining, ICDM ’04, pages 249–256, Washington, DC,
USA, 2004. IEEE Computer Society.

[48] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei.
Minimality attack in privacy preserving data publishing.
In Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB ’07, pages 543–554. VLDB
Endowment, 2007.

[49] X. Xiao, G. Bender, M. Hay, and J. Gehrke.
ireduct: Differential privacy with reduced relative errors.
In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’11, pages
229–240, New York, NY, USA, 2011. ACM.

[50] X. Xiao and Y. Tao.
M-invariance: Towards privacy preserving re-publication of
dynamic datasets.



59

In Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07, pages
689–700, New York, NY, USA, 2007. ACM.

[51] Y. Xiao, J. J. Gardner, and L. Xiong.
DPCube: Releasing Differentially Private Data Cubes for
Health Information.
In ICDE, pages 1305–1308, 2012.



59

Appendix



60

Achieving k-Anonymity

I The more general a value is, the more people correspond to it
: “less people in Urrugne, than in Pays Basque, than in
France.”

I Based on generalizing/suppressing the values of the attributes
of the QID (also called recoding)

I Numerical attribute : from values to ranges

I Categorical attribute: need a taxonomy (e.g., Urrugne > Pays
Basque > France),

I Output an optimal release, i.e., one that satisfies k-Anonymity
with a minimal number of generalizations
⇒ Shown to be hard [2, 39]
⇒ Many alternative strategies/simplifications/heuristics (e.g.,
[2, 7, 21, 33, 44, 39, 47])

I Not the focus of this talk but lets have a quick look at one of
them. . .
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Formalizing the Bayes-Optimal Model I

I Background knowledge: joint distribution between
quasi-identifiers and sensitive data : f (s, q).

Prior belief
Given a target QI q (the victim) and a sensivite data s :

α(q, s) = Prf (s|q) =
f (s, q)∑

s′∈SD f (s ′, q)
(1)
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Formalizing the Bayes-Optimal Model II

I Let V be the sanitized release

I Let q? be the QI of the equivalence class that contains q

I Let n(q?, s) be the number of tuples 〈q?, s〉 in V;

I Let f (s|q?) be the conditional probability that s be associated
to the QIs that have been generalized to q?;

Posterior belief
Given a target QI q, a sensitive data s, and the release V:

β(q, s,V) = Pr(s|q ∧ V) =
n(q?, s) f (s|q)

f (s|q?)∑
s′∈SD n(q?, s ′) f (s′|q)

f (s′|q?)

(2)

(proof in [37])
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Formalizing the Bayes-Optimal Model III

A sanitized release V satisfies Bayes-Optimal Privacy if:

∀q ∈ QI , s ∈ SD, abs(α(q, s)− β(q, s,V)) < τ (3)

where abs returns the absolute value of its argument and τ is the
user-defined threshold over the adversarial knowledge gain.
Note: alternative definitions exist [37].
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Example I

Let the adversary’s background knowledge about Don be:

f (〈 qDon,Cold〉) = 0.1 α(qDon,Cold) =??
f (〈qDon,Flu〉) = 0.01 α(qDon,Flu) =??
f (〈qDon,HIV 〉) = 0.14 α(qDon,HIV ) =??

What is his prior belief about Don ?
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Example II

Answer:
f (〈 qDon,Cold〉) = 0.1 α(qDon,Cold) = 0.1/0.25 = 0.4
f (〈qDon,Flu〉) = 0.01 α(qDon,Flu) = 0.01/0.25 = 0.04
f (〈qDon,HIV 〉) = 0.14 α(qDon,HIV ) = 0.14/0.25 = 0.56
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Example III

Let the adversary’s background knowledge about any individual
other than Don be:

f (〈 qi ,Cold〉) = 0.083 α(qi ,Cold) =??
f (〈qi ,Flu〉) = 0.083 α(qi ,Flu) =??
f (〈qi ,HIV 〉) = 0.083 α(qi ,HIV ) =??

What is his prior belief about any other individual ?
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Example IV

Answer:
f (〈 qi ,Cold〉) = 0.083 α(qi ,Cold) = 0.083/0.25 = 0.33
f (〈qi ,Flu〉) = 0.083 α(qi ,Flu) = 0.083/0.25 = 0.33
f (〈qi ,HIV 〉) = 0.083 α(qi ,HIV ) = 0.083/0.25 = 0.33
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Example V

Let V be the 2-anonymous release:
Zip Age Dis.

[75001, 75002] [22, 29] Cold
[75001, 75002] [22, 29] Flu
[75003, 75010] [22, 29] Cold
[75003, 75010] [22, 29] HIV

Recall that qDon = 〈75003, 22〉 and is known by the adversary.

What is his posterior belief about Don ?
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Example VI

Answer:

In the above release, q?Don = 〈[75003, 75010], [22, 29]〉.

Then, the adversary’s posterior belief about Don is:

β(qDon,Flu,V) =
0∗ 0.04

0.37

1.18 = 0

β(qDon,Cold ,V) =
1∗ 0.4

0.73

1.18 = 0.46

β(qDon,HIV ,V) =
1∗ 0.56

0.89

1.18 = 0.54
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Example VII

As a result:
Prior Posterior

α(qDon,Cold) = 0.4 β(qDon,Cold ,V) = 0.46
α(qDon,Flu) = 0.04 β(qDon,Flu,V) = 0
α(qDon,HIV ) = 0.56 β(qDon,HIV ,V) = 0.54

Is there a privacy breach ?
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Recursive (c , l)-Diversity

For each class:

I Count the occurence of each sensitive value;

I and sort them by descending order.

Let r1 be the first count, ..., rm be the mth.

Recursive (c , l) Diversity

An equivalence class satisfying Recursive (c , l)-Diversity
satisfies: r1 < c(rl + rl+1 + ...+ rm).
A release V satisfies Recursive (c , l)-Diversity if all its
equivalence classes satisfy it.
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Examples

What is the protection offered by the classes having the following
counts?

r1 100
r2 6
r3 5
r4 3
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Examples

What is the protection offered by the classes having the following
counts?

r1 100
r2 6
r3 5
r4 3

r1 7
r2 6
r3 5
r4 3
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Recursive (c , l) Diversity, bis I

Assume that the counts of Don’s class are as follows:

r1 7
r2 6�� ��r3 5

r4 3
r5 1
r6 1

⇒ Satisfies Recursive (1, 3)-Diversity.
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Recursive (c , l) Diversity, bis II

The adversary knows that Don does not have flu.

If the count of flu is r2:

r1 7
r2 6�� ��r3 5

r4 3
r5 1
r6 1

⇒

r1 7�� ��r2 5

r3 3
r4 1
r5 1

⇒ Satisfies Recursive (1, 2)-Diversity.
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Recursive (c , l) Diversity, bis III

The adversary knows that Don does not have flu.

If the count of flu is r6:

r1 7
r2 6�� ��r3 5

r4 3
r5 1
r6 1

⇒

r1 7
r2 6�� ��r3 5

r4 3
r5 1

⇒ Satisfies Recursive (1, 3)-Diversity.
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Recursive (c , l) Diversity, bis IV

Recursive (c , l)-Diversity + 1 negation statement → What is
the protection level at worst?
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Limits of differential privacy

Even differential privacy has its limits ;)

But they are hard to grasp (underlying assumptions are most often
only implicit). Actually, we have assumptions [30]:

I About the dataset.

I “Differential privacy works without any assumption about the
dataset.” : Wrong

I ⇒ All tuples are considered independant !

I About the attacker.

I “Differential privacy works against arbitrary background
knowledge.”: Wrong

I ⇒ Differential privacy does not compose with the
deterministic release of marginal counts
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Private Record Matching [26]

Context:

I Two mutually distrustful entities hold a DB

I They want to match their records (i.e., join “close” records
together)

I So that the non-matching records of each entity remain
hidden to the other

Proposal :

I Overcome the efficiency limits of the Secure Multiparty
Computation protocols (SMC)

I By disclosing differentially private information (relaxing the
security definition):

I Partition the records into regions (eg, age in [45, 50[)
I Publish differentially private stats of each partition in order to

identify those for which some records may match (eg,
partitions [35, 48[ and [45, 50[)

I Match by a SMC the regions that have not been filtered out
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Chiaroscuro and 2D Points

On a set of 750K 2D random points7 distributed in 50 clusters :

7
From : I. Kärkkäinen and P. Fränti, “Dynamic local search algorithm for the clustering problem”, Research

Report A-2002-6, available at https://cs.joensuu.fi/sipu/datasets/

https://cs.joensuu.fi/sipu/datasets/
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